Обеззараживание семян капусты от сосудистого бактериоза

А.Т. Орынбаев, Ф.С. Джалилов

Приведены данные двухлетнего исследования по поиску эффективных препаратов для обеззараживания семян капусты от сосудистого бактериоза. Наилучший результат был получен при предпосевной обработке 0,15%-ной надуксусной кислотой. При этом биологическая эффективность составляла 94,1–97,6%, что значительно превышало соответствующий показатель в эталонном варианте – Фитолавин, ВРК, 0,2% (69,0–72,0%). Показано, что заблаговременная обработка семян НУК (за 550 суток до посева) не оказывала достоверного влияния на их лабораторную всхожесть.

Ключевые слова: капуста, сосудистый бактериоз, надуксусная кислота.

осудистый бактериоз капусты, вызываемый Xanthomonas campestris pv. campestris (Х.с.с) – наиболее распространенное и вредоносное бактериальное заболевание капустных культур [1]. Симптомы заражения обычно заметны у края листовой пластинки в виде V-образных хлоротичных пятен, вследствие проникновения бактерий через гидатоды (рис. 1). На пожелтевшей ткани наблюдается почернение сосудов, на срезе черешка или кочерыги также хорошо видна некротизация сосудов. Возбудитель сохраняется в семенах, пораженных растительных остатках, сорных растениях из семейства капустных [2].

Даже слабая зараженность партии семян может вызвать значительный ущерб, особенно, при рассадном методе выращивания. Так, установлено, что наличие 3–5 зараженных семян на 10 тыс. шт. достаточно, чтобы вызывать существенное заражение в поле [3]. Поэтому, к средствам предпосевной обработки семян предъявляют высокие требования по их биологической эффективности.

К известным способам снижения зараженности семян можно отнести гидротермическую обработку, обработку препаратами на основе антибиотиков (Фитолавин, ВРК), биопрепаратами на основе антагонистических бактерий (Гамаир, Планриз), ТМТД (тирам), некоторыми эфирными маслами [4]. Установлено, что замачивание семян капусты в 3%-ном растворе перекиси водорода значительно снижало развитие сосудистого бактериоза [5].

Ввиду того, что эти препараты не обеспечивают полного обеззараживания партий семян с высокой заражен-

ностью, весьма актуален поиск новых средств с высокой биологической эффективностью по отношению к возбудителю сосудистого бактериоза.

Препараты на основе надуксусной кислоты (НУК) успешно применяют в пищевой промышленности в качестве дезинфицирующих средств, для антимикробной обработки фруктов и овощей, а также для дезинфекции питьевой воды, в системах обратного осмоса и фильтрации. Кроме того, их широко используют в ветеринарии, медицине и там, где требуется особая микробиологическая чистота и стерильность [6].

Составляющие компоненты этих препаратов легко разлагаются на воду, кислород и уксусную кислоту и не наносят вред окружающей среде, а самое главное – безопасны для людей. Важно, что при длительном применении препарата не происходит формирования резистентности к нему у микроорганизмов [6].

Рис. 1. Поражение капусты сосудистым бактериозом в поле

В США изучена возможность использования надуксусной кислоты для борьбы с бактериозами и фузариозом арбуза и дыни. Показано, что обработка семян надуксусной кислотой в концентрациях 1600 мкг/мл и выше в течение 30 мин. полностью обеззараживала семена, не снижая их всхожести [7].

Цель нашего исследования состояла в оценке эффективности НУК в борьбе с семенной инфекцией сосудистого бактериоза.

Исследования проводили в 2016—2017 годах в лаборатории защиты растений РГАУ-МСХА имени К.А. Тимирязева. В работе использовали семена белокочанной капусты F_1 Казачок, штамм X.с.с. Ram 1–3 из коллекции лаборатории защиты растений.

Заражение семян проводили вакуум-инфильтрацией суспензией Х.с.с [4]. Затем семена подсушивали при комнатной температуре 24 часа и замачивали в растворах НУК, перекиси водорода (ПВ) в различных концентрациях. В качестве эталона использовали рекомендованный для предпосевной обработки от сосудистого бактериоза 0,2%-ный Фитолавин, ВРК. Экспозиция при всех обработках - 30 мин. Контроль - зараженные семена, замоченные в стерильной воде. Затем в двух независимых экспериментах оценивали влияние экспозиции (5, 10, 20 и 30 мин.) при обработке НУК на биологическую эффективность обеззараживания.

Для определения зараженности семена проращивали на влажной фильтровальной бумаге в чашке Петри. В каждом варианте анализировали три повторности по 50 семян в каждой. Чашки выдерживали на свету при температуре 23–25 °С. Через 6 дней после посева количество зараженных проростков учитывали путем визуального осмотра семядольных листочков. В сомнительных случаях пользовались бинокулярной лупой. Лабораторную всхожесть семян определяли по ГОСТ 12038–84.

Концентрацию жизнеспособных клеток возбудителя на семенах в опыт-

Таблица 1. Биологическая эффективность обработки семян (БЭ) капусты F, Казачок против сосудистого бактериоза, 2016-2017 годы

Вариант	2016 год			2017 год		
	лабораторная всхожесть, %	зараженность, %	БЭ, %	лабораторная всхожесть, %	зараженность, %	БЭ, %
Контроль (вода)	83,3	55,9 a	-	87,3	62,1 a	-
НУК 0,04%	83,3	7,4 c	86,8	86,0	13,2 bc	78,7
НУК 0,075%	81,3	4,3 c	92,3	87,3	8,5 cd	86,3
НУК 0,15%	82,0	3,3 с	94,1	88,0	1,5 e	97,6
Перекись водорода 2%	86,0	6,2 c	88,9	88,0	16,8 bc	72,9
Перекись водорода 3%	88,0	4,6 c	91,8	88,7	10,5 bc	83,1
Перекись водорода 4%	86,7	3,7 c	93,4	90,3	11,4 bc	81,6
Фитолавин, ВРК, 0,2% (эталон)	84,7	17,3 b	69,0	88,7	17,4 b	72,0
	$F_{\phi} < F_{05}$			$F_{\phi} < F_{05}$		

Примечание: между вариантами, обозначенными одинаковыми буквами при сравнении в пределах столбцов нет статистически достоверных различий по критерию Дункана при 95%-м уровне вероятности.

ных вариантах определяли экстрагированием в стерильном физрастворе с последующим высевом экстракта на селективную среду содержащую крахмал [4]. Подсчет гидролизующих крахмал колоний проводили через 48 часов. Рассчитывали количество колониеобразующих единиц бактерий в исходном экстракте (КОЕ/мл).

Статистическую обработку экспериментальных данных проводили методом дисперсионного анализа со сравнением средних по критерию Дункана с помощью пакета STATISTICA 5.5.

Проращивание искусственно зараженных семян привело к появлению на семядольных листьях симптомов заболевания в виде некротизации сосудов (рис. 2). В контроле наблюдали сильную распространенность заболевания зараженность

Puc. 2. Симптомы сосудистого бактериоза на семядольном листе капусты

проростков 55,9% в 2016 году и 62,1% в 2017 году. В предварительных экспериментах не обнаружили разницы между вариантами с промыванием семян в чистой воде после обработки НУК и без промывания. Поэтому в последующих экспериментах промывание после обработки не использовали.

В 2016 году обработка НУК (в трех концентрациях) и перекисью водорода (в 3 концентрациях) по биологической эффективности были достоверно лучше эталонного варианта (Фитолавин, ВРК, 0,2%). В 2017 году наивысшую эффективность показала обработка НУК 0,15%, при этом биологическая эффективность достигала 97,6% (табл. 1). Перекись водорода в концентрациях 2–4% также обеспечивала значительное снижение числа пораженных проростков, по сравнению с контролем. При этом в 2016 году обработка переки-

сью водорода дала достоверное снижение зараженности по сравнению с эталонным вариантом, в отличие от 2017 года, когда существенных различий между этими вариантами не было выявлено.

Концентрация жизнеспособных клеток патогена в экстракте семян после обработок существенно снижалась. Наиболее значительное снижение наблюдалось при обработке 0,15%-ной НУК. Так, если в контроле концентрация патогена в семенном экстракте составляла 5,5х105 КОЕ/мл, то после тридцатиминутной обработки в 0,15%-ной НУК, она снизилась до 5,0 КОЕ/мл.

Ни один из вариантов обработки семян за сутки до посева не приводил к статистически достоверному снижению лабораторной всхожести семян. Проверка возможности заблаговременной обработки семян показала, при хранении свыше

Таблица 2. Лабораторная всхожесть семян (%) капусты F, Казачок при различном периоде хранения семян после обработки, 2016–2017 годы

Вариант	Период хранения после обработки, суток							
	1	7	14	30	130	550		
Контроль (вода)	84,0	88,6	88,0	86,0 a	83,4 a	84,0		
НУК, 0,15%	85,2	89,2	84,6	85,4 a	82,6 a	82,3		
Перекись водо- рода 4%	87,2	84,0	80,6	78,6 b	68,6 b	не опреде- ляли		
	$F_{\Phi} < F_{05}$	$F_{\phi} < F_{05}$	$F_{\phi} < F_{05}$			$F_{\phi} < F_{05}$		

Примечание: между вариантами, обозначенными одинаковыми буквами при сравнении в пределах столбцов нет статистически достоверных различий по критерию Дункана при 95%-м уровне вероятности. 14 суток, семян обработанных 4%ной перекисью водорода, наблюдали достоверное снижение всхожести по сравнению с контролем (табл. 2). Исходя из этих результатов, можно сделать вывод о том, что перекись водорода непригодна для заблаговременного обеззараживания семян.

В то же время всхожесть семян, обработанных 0,15%-ной НУК, не снижалась даже через 550 суток после обработки, что позволяет использовать этот прием в семеноводческих хозяйствах перед реализацией семян.

Два независимых эксперимента по изучению влияния различных экспозиций (5, 10, 20 и 30 мин.) при обработке семян 0,15%-ной НУК не выявили различий в биологической эффективности и, поэтому, считаем целесообразным на практике использовать пятиминутную экспозицию.

Наши предварительные результаты указывают на перспективность опрыскивания 0,15%-ной НУК для ограничения распространения патогена при выращивании рассады. При этом не было обнаружено фитотоксического действия, а биологическая эффективность варьировала от 51,5% до 61,1%. НУК также целесообразно использовать для обеззараживания кассет, ящиков и другой тары, а также теплиц с неметаллическим каркасом.

Полученные нами двухлетние экспериментальные данные указывают, что обработка семян в течение 5 минут 0,15%-ной надуксусной кислотой способна эффективно подавлять семенную инфекцию. Этот прием может занять свое место в системе защиты капусты от сосудистого бактериоза после государственной регистрации.

Библиографический список

- 1.Ignatov A.N., Panchuk S.V., Vo Thi Ngok Ha, Mazurin E.S., Kromina K.A., Dzhalilov F.S. Black rot of brassicas in Russia – epidemics, protection, and sources for resistant plants breeding // Картофель и овощи. 2016. № 2. С. 15–16.
- 2.Джалилов Ф.С., Во Тхи Нгок Ха. Сосудистый бактериоз капусты // Картофель и овощи. 2014. № 1. С. 11–14
- 3.Schaad N.W., Sitterly W.R., Humaydan H. Relationship of incidence of seedborne Xanthomonas campestris pv. campestris to black rot of crucifers // Plant Disease. 1980. V. 64. N. 1. Pp. 91–92.
- 4.Во Тхи Нгок Ха, Джалилов Ф.С. Антибактериальная активность эфирных масел и их использование для обеззараживания семян капусты от сосудистого бактериоза // Известия ТСХА. 2014. Вып. 6. С. 59–68.
- 5.Kim B.S. Testing for detection of Xanthomonas campestris pv. campestris in crucifer seeds and seed disinfection // Korean J. of Plant Pathology. 1986. V.2. N^2 2. Pp. 96–101.
- 6.Глазова Н.В., Сатина О.И. НУК: Экологически безопасная альтернатива хлору // Птица и птицепродукты. 2010. Вып. 1. С. 58–60.
- 7.Hopkins D. L., Thompson C. M. Wet Seed Treatment with Peroxyacetic Acid for the Control of Bacterial Fruit Blotch and Other Seedborne Diseases of Watermelon // Plant Disease. 2003. V. 87. № 12. Pp. 1495–1499.

<u>Об авторах</u> Орынбаев Аспен Турсынгалиевич,

аспирант. E-mail: aspen_kz@mail.ru

Джалилов Февзи Сеид-Умерович,

доктор биол. наук, профессор, зав. лабораторией защиты растений. E-mail: labzara@mail.ru ФГБОУ ВО Российский государственный аграрный университет – МСХА имени К.А. Тимирязева (РГАУ – МСХА).

Disinfection of cabbage seeds from black rot

A.T. Orynbayev, postgraduate student. *E-mail:* aspen kz@mail.ru

F.S. Dzhalilov, *DSc.*, head of the Plant Protection Laboratory.

E-mail: labzara@mail.ru

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (RSAU – MTAA).

Summary. Presented data are the result of a two-year study aimed at identifying effective preparations for the disinfection of cabbage seeds from black rot. The best result was obtained by presowing treatment with 0.15% peracetic acid. In this case, the biological efficiency was 94.1–97.6%, which significantly exceeded the corresponding indicator in the reference variant – Phytolavin, VRK, 0.2% (69.0–72.0%). The study has not revealed any significant effect of advance treatment of seeds with peracetic acid (550 days before sowing) on their laboratory germination.

Keywords: cabbage, black rot, peracetic acid.

Даешь миллион!

Волгоградцы в 2017 году вырастили миллион тонн овощных культур

Как сообщил Волгоградстат, по предварительным подсчетам, сбор овощей, выращенных в открытом и закрытом грунте в Волгоградской области, составил 1,254 млн т. В этот показатель включены результаты всех хозяйствующих субъектов, действующих в сфере овощеводства.

Основная масса овощей выращена индивидуальными предпринимателями и небольшими фермами. Вклад этих категорий хозяйств составил 46% от общего количества выращенных культур. С.— х. организации и личные подсобные хозяйства внесли лепту в размере 27% произведенной продукции.

Источник: www.volgonline.ru

Картофелю не будет холодноНа Ямале разрабатывают новые сорта картофеля для

На Ямале разрабатывают новые сорта картофеля для Крайнего Севера

Исследования по разработке новых сортов картофеля для выращивания в условиях Крайнего Севера будут организованы в 2018 году на Ямале. Их будут проводить специалисты департамента по науке и инновациям Ямало-Ненецкого автономного округа совместно с учеными Ямальской с.— х. опытной станции, сообщили в департаменте по науке по итогам заседания общественного совета в Салехарде.

«Наука на Ямале ориентирована на решение прикладных задач, связанных с промышленным освоением региона, изучением влияния экологических факторов на здоровье населения, развитием агропромышленного комплекса. В 2018 году департамент планирует усилить работу с Ямальской с. – х. опытной станцией по созданию селекционных рядов картофеля для Крайнего Севера», – говорится в сообщении.

Источник: www.fruit-inform.com

Успехи тепличников

В 2017 году сбор тепличных овощей вырос на 13%

По данным региональных органов управления АПК России, на конец 2017 года валовой сбор тепличных овощей в целом по стране составляет 711,3 тыс. т, что на 13% больше, чем за аналогичный период прошлого года. Об этом сообщает пресс-служба Минсельхоза РФ.

Всего по стране собрано 463,4 тыс. т огурцов и 236,6 тыс. т томатов. Валовой сбор прочих овощных культур составляет 10,9 тыс. т. Лидерами по производству тепличных овощей в с. – х. организациях и КФХ среди субъектов РФ стали Краснодарский край – 85,0 тыс. т, Ставропольский край – 64,6 тыс. т, Республика Татарстан – 45,1 тыс. т, Республика Башкортостан – 39,9 тыс. т и Липецкая область – 34,6 тыс. т.

Источник: www.fruit-inform.com